
1

A Survey of Emerging Concepts and Challenges for QoE
Management of Multimedia Services

LEA SKORIN-KAPOV, Univ. of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
MARTÍN VARELA, EXFO, Finland
TOBIAS HOSSFELD, University of Duisburg-Essen, Modeling of Adaptive Systems, Germany
KUAN-TA CHEN, Institute of Information Science, Academia Sinica, Taiwan

Quality of Experience (QoE) has received much attention over the past years and has become a prominent issue
for delivering services and applications. A signi�cant amount of research has been devoted to understanding,
measuring, and modelling QoE for a variety of media services. The next logical step is to actively exploit that
accumulated knowledge to improve and manage the quality of multimedia services, while at the same time
ensuring e�cient and cost-e�ective network operations. Moreover, with many di�erent players involved in
the end-to-end service delivery chain, identifying the root causes of QoE impairments and �nding e�ective
solutions for meeting the end users’ requirements and expectations in terms of service quality is a challenging
and complex problem. In this paper we survey state-of-the-art �ndings and present emerging concepts and
challenges related to managing QoE for networked multimedia services. Going beyond a number of previously
published survey papers addressing the topic of QoE management, we address QoE management in the context
of ongoing developments, such as the move to softwarized networks, the exploitation of big data analytics
and machine learning, and the steady rise of new and immersive services (e.g., augmented and virtual reality).
We address the implications of such paradigm shifts in terms of new approaches in QoE modeling, and the
need for novel QoE monitoring and management infrastructures.
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gies → Machine learning; • Human-centered computing → Human computer interaction (HCI);
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1 INTRODUCTION
Recent developments in the telecommunications and networking communities, centred around
cloud-based infrastructures as well as the gradual migration towards softwarized networks and 5G
architectures, are paving the way towards new service delivery opportunities. A number of novel
and emerging multimedia service use cases are envisaged, characterized by requirements such as
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high bandwidth, ultra-low latency, high reliability, and high user mobility. While video transmission
is expected to prevail as a dominant application in the near future, new service trends exploiting
immersive technologies, such as virtual/augmented reality [117] or multi-sensorial media [49, 84],
impose QoE-related requirements at both the network and application layers which require further
research and standardization e�orts. In this paper, we focus on emerging trends that have key
implications on future QoE management mechanisms.

1.1 Emerging trends
Meeting multimedia service requirements calls for e�ective and �exible QoE management mech-
anisms integrated into the service delivery process. Novel network architectures and protocol
designs are needed to overcome technical bottlenecks and challenges associated with delivering
advanced multimedia services in the future Internet. In the telco domain, the ongoing paradigm
shifts towards Network Function Virtualization (NFV) and virtualized networks, as well as Software
De�ned Networking (SDN), have strong implications on the QoE management domain. While NFV
serves as a technology for decoupling hardware resources from software and functionality, SDN
separates the control and forwarding planes and enables programmability of the NFV networking
infrastructure. As such, these technologies enable new QoE management-related mechanisms such
as programmable and �exible resource allocation to meet heterogeneous service requirements, and
dynamic service orchestration. While such mechanisms o�er clear opportunities, challenges arise,
such as performance monitoring, and latency resulting from virtualization. Going beyond central-
ized data centers, virtualization and cloud technologies are being pushed towards the network edge,
with the Mobile Edge Computing (MEC) paradigm playing a key role in minimizing latency and
meeting application QoE requirements [100].

To-date, QoE management has been addressed from multiple, often complementary perspectives,
with di�erent control points spread along the delivery path [115]. QoE-driven application manage-
ment has primarily addressed control and adaptation on the end-user and application host/cloud
level, often studied from an application provider perspective in the context of optimizing the quality
of Over-The-Top (OTT) applications and services. As an example, applications such as HTTP-based
adaptive video streaming dynamically adapt to varying network conditions so as to maintain a high
level of QoE. Such mechanism represent an application control loop which is often independent
of network management mechanisms. On the other hand, network providers generally rely on
performance and tra�c monitoring solutions deployed within their access/core network to obtain
insight into impairments perceived by end users. QoE-driven network management mechanisms
have thus focused on the network provider point of view and considered control mechanisms
such as optimized network resource allocation and e�ciency (in particular in wireless systems
[75, 86]), admission control, QoE-driven routing, etc. Such control thus aims to facilitate e�cient
network operations and maintain high QoE, without directly managing the applications. Recently,
network-based QoE monitoring mechanisms have been greatly impacted by the widespread use of
tra�c encryption in OTT tra�c, leaving ISPs to search for novel approaches such as those based
on machine-learning methods for estimating QoE (or QoE indicators) from encrypted tra�c [2, 97].
The increased exploitation of data analytics and big data techniques is foreseen in the context
of monitoring users’ QoE, through new metrics combining both network and behavioral data
[131, 140].

Given the inherent bene�ts when performing application-aware network management and
network-aware application management [118, 151], studies have shown that further potential lies in
integrated and cross-layer QoE management approaches [16, 69, 75], stemming from various forms
of cooperative agreements and information exchange between involved stakeholders [4, 65]. With
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services being delivered via a chain of di�erent providers, challenges lie in specifying the underlying
business models and Service Level Agreements crucial to meeting user quality requirements. To this
end, �nancial incentives, economic aspects, and regulatory aspects all play key roles in realizing
cooperative approaches.

1.2 Contribution beyond previous surveys
A number of survey papers have been published in the past 2–4 years giving various overviews of
QoE management-related studies. An in-depth overview and comparison of previous studies is
given by Barakovic and Skorin-Kapov [13], who focus in particular on QoE modeling, monitoring,
and control in wireless networks. Schatz et al. distinguish between QoE-driven application manage-
ment (observing both pro-active and re-active approaches) and QoE-driven network management
approaches [115]. A further systematic comparison of mechanisms for QoE-centric coordinated
application-network interaction is proposed by Schwarzmann et al. [118], based on the exchange
of monitoring and control information between involved entities.

Among the most recent surveys, Robitza et al. [110] provide an in-depth overview of quality
monitoring models and probing technologies, and provide insights into major challenges faced
by ISPs. More speci�cally, Zhao et al. give a comprehensive overview of studies on the QoE
management of video transmission over various types of networks [149]. The authors especially
highlight research e�orts addressing the role of context and human factors in the video QoE
management process, which have until recently been for the most part neglected. Duan et al. [34]
further summarize recent results that focus on understanding and exploiting the human factor in
designing mobile networks, resulting in enhanced system e�ciency and QoE.

The overview presented in this paper (summarized in Figure 1) is intended to be complementary
to previously published surveys, and for the most part discusses work published in the last 2–3 years.
Our focus is on discussing key developments and emerging concepts in the networking and service
delivery domains that have strong implications on both the theoretical and practical realization
of QoE management techniques. The paper structure is portrayed in Figure 2 and is organized as
follows. Sec. 2 surveys emerging approaches in QoE modeling, focusing on di�erent methods for
subjective data collection and new modeling approaches. Key concepts related to monitoring QoE
and related metrics are discussed in Sec. 3, considering trends in the deployment of monitoring
infrastructures, and the challenges imposed with the widespread adoption of encrypted tra�c.
Sec. 4 focuses on QoE management mechanisms in softwarized networks. Finally, perspectives for
QoE management are discussed in Sec. 5, addressing economic and business aspects, and challenges
with respect to new multimedia domains characterized by immersive applications. Concluding
remarks are given in Sec. 6. The Online Appendix to this paper discusses di�erent QoE optimization
objectives, and metrics beyond MOS to be considered for QoE management purposes.

2 QOE MODELING
QoE models are the foundation for QoE monitoring and management approaches, since they
identify the relevant QoE parameters, and to which extent they in�uence the QoE. The models may
focus on the di�erent impacts of provisioning and delivery problems due to insu�cient resources
on QoE. The provisioning-delivery hysteresis [61] postulates the necessity to control quality (e.g.,
HTTP adaptive streaming), instead of su�ering from uncontrollable impacts like packet loss caused
by congestion. Thus, the provisioning-delivery hysteresis demands for proper QoE management
based on appropriate QoE models.

In general, we distinguish between full-reference, reduced reference, and no-reference models.
In the context of QoE management and monitoring, we typically have reduced reference or even
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Fig. 1. Key developments and emerging concepts with implications for QoE management.
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- Active learning (Sec. 2.2.1)
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Perspectives (Sec. 5)

Novel infrastructures (Sec. 5.1)
Economic and business aspects (Sec. 5.2)
New service domains (Sec. 5.3)
- Immersive AR/VR, Multisensory

Fig. 2. Paper structure (note: the Appendix to this paper is available online).

no-reference models, as the full-reference requires the original content for comparison with the
transmitted, degraded content. Thus, QoE management typically requires models which are fed
with some objectively measurable QoS parameters, such as packet loss or video bitrate.

2.1 Survey on QoE Models
The literature provides several classi�cation schemes for QoE models as portrayed below.

Some classi�cation criteria for QoE modeling approaches

• type of application or service [116, 135], e.g., image [36], voice, video [26], web service,
• availability of reference information [41]: full reference, reduced reference, no refer-

ence, e.g., [26, 36] for image and video models,
• type of input data as in ITU standardization activities [6, 26]: media-layer (or signal

based) models, parametric packet-layer models, parametric planning models, bitstream
layer models, hybrid models,
• blackbox vs. whitebox models [6]: machine learning methods applied to QoE [7],

fundamental relationships between QoS and QoE [6, 116].
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Schatz et al. [116] surveyed available QoE models for voice communication services, audio-visual
services, and also web-based services including web browsing. Chikkerur et al. [26] focus on
media-layer video quality models which include speech or video signal in the QoE model. Such
signal-based models are often used for codec comparison and optimization. In contrast, parametric
packet-layer models only rely on packet-header information without processing the media signals,
which is appropriate for QoE management and network quality monitoring. Bitstream-layer models
extract additional information from the bitstream, i.e., from partly decoded media. The focus of
such packet-layer and bitstream models is low computational e�ort and easily measurable input
parameters. The classi�cation according to ITU standardization activities represents the purpose
of the models. Network planning models allow to predict QoE of new networks and services
by considering quality planning parameter settings. Of course, combinations of the modeling
approaches exist, i.e., using information extracted from packet headers, bitstreams or media signals.
For Internet-based video delivery, HTTP adaptive streaming (HAS) is the dominant technology.
Currently, there is no widely accepted QoE model for HAS, but ITU-T provides a parametric
bitstream-based quality assessment model in ITU-T P.1203 (formerly referred to as P.NATS) [68],
while the key in�uences factors of HAS are surveyed in [45, 121].

For generic cloud services, there are some studies on their QoE in�uence factors. A QoE-based
classi�cation scheme for cloud services proposed by Hoßfeld et al. [65] distinguishes the level of
interactivity, service complexity, usage domain and multimedia intensity. Subjective QoE results
reported by Casas et al. [20] relate QoS parameters like network round-trip time or network
bandwidth with QoE for cloud services with di�erent requirements, such as those requiring low
latency and interactivity (e.g., Cloud storage systems), multimedia On-Demand services (e.g.,
YouTube video streaming), communication and telepresence (e.g., Lync Online videoconferencing),
and highly interactive services (e.g., Virtual Cloud Desktop). Nevertheless, no concrete models are
provided. The current focus in most QoE modeling research is on video streaming, voice services,
and to some extent web browsing applications. We emphasize that QoE models are fundamental for
the implementation of QoE-driven cross-layer and application-layer management mechanisms. For
many applications, including cloud services, no concrete QoE models exist and there are limited
QoE management e�orts, but there are preliminary QoE-related works for, e.g., social TV [132], 3D
QoE [59], haptic internet [5], telemedicine [22] and immersive AR/VR applications (Sec. 5.3).

Another classi�cation criterion is the type of model itself, i.e., blackbox or whitebox models. Black
box models provide an output for any given input, however, the mathematical model and structure
is opaque and considered as a black box. This is typically the case for neural networks or other
machine learning approaches [7]. In contrast, white box model provide a mathematical model which
may often be built on laws from psychophysics, like the Weber-Fechner law or Steven’s power law.
General relationships between QoE and QoS parameters are derived based on Weber-Fechner’s law,
e.g., for web browsing (as reported by Reichl et al. [107]), leading to a logarithmic form, but also
on Steven’s power law, e.g., to correlate packet loss and video QoE [7]. The IQX model proposed
by Fiedler et al. [40] assumes that the QoE sensitivity of a user depends on the actual QoE level
yielding an exponential solution. The general relationships and functional forms are discussed
in [6, 7, 40, 82, 116]. The ARCU model provides a multi-dimensional view of QoE and helps to
systematically identify QoE in�uence factors as well as their relations [127].

2.2 Emerging Approaches for Deriving QoE Models
Generic relationships between QoE and QoS have been intensively discussed in literature (see
Section 2.1), but mainly with a focus on single QoS parameters. However, the generic relationship
between them, and how to best model it, are yet not clear. Due to the growth of the parameter
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space where each parameter adds one dimension of complexity, it is required in practice to come up
with proper sampling approaches and parameter selection (Section 2.2.1). Along with an increased
parameter space, there is still the desire to conduct subjective studies with reduced turnaround times.
Crowdsourcing o�ers this possiblity and allows to test user-related factors due to the international
huge crowd (Section 2.2.2). A better understanding of user-related factors is key to approach also
new ways of QoE models targeting individual users. Such personalized or individual QoE models
may be utilized to improve the QoE of individual users by adapting, e.g., the video bu�er or video
adaptation strategies according to user pro�les [64]. Recent e�orts also consider psychophysiology-
based QoE assessment to incorporate psychophysiology signals in QoE (Section 2.2.3). To cope with
the large amount of potential parameters derived from packets, bitstreams or signals, data-aware
QoE models and machine-learning (ML) based models are arising (Section 2.2.4).

2.2.1 Large Parameter Spaces: Active Learning. Active learning is a sub�eld of semi-supervised
machine learning and has the goal to increase the sampling e�ciency for a QoE model. A good
survey on this is provided by Settles in [120]. The key idea of active learning is that the learning
algorithm selects the data from which it learns most, thus reducing the number of samples while
getting the same performance. In the context of QoE studies, active learning determines the next
test conditions to be evaluated by subjects. Osting et al. [98] used active sampling for paired
comparison tests which are used to evaluate the user’s preference of a pair of stimuli. In particular,
the LIVE video data set1 was used containing 38,400 paired comparisons. The active sampling
strategy then determines the next pairs to be compared by a subject. Ye and Doermann [145]
applied adaptive learning for subjective image quality assessment. A method is proposed which
actively constructs a set of queries consisting of several test conditions, i.e., test images, based on
the expected information gain provided by each test. As a result, the number of required tests can
be e�ectively reduced for achieving a target accuracy.

An active learning approach is developed by Menkovski et al. in [88, 89] which is based on
Maximum Likelihood Di�erence Scaling (MLDS). The investigated parameter is the video bitrate
for di�erent types of video contents, with the goal being to provide a mapping function between
video bitrate and QoE. The idea of MLDS is to scale di�erences between test stimuli (here: videos
with certain bitrates). The combination of active learning and MLDS makes it promising to develop
QoE models and to overcome biases from single stimulus ratings, e.g., due to rating scale usage of
subjects [46], only. However, MLDS only quantifes the relative di�erence in quality rather than
absolute rating which may be nevertheless su�cient for QoE management. Other approaches for
overcoming such rating scale issues are paired comparison tests and mapping the comparison
results to absolute quality scores, e.g., based on the Bradley-Terry model or the Thurstone’s model
[80]. Also training [46] or anchoring [105] may overcome this problem of rating scale usage.

Dynamic test condition selection proposed by Seufert et al. [124] provides an approach for
conducting QoE studies which are constrained by a �xed budget of user ratings. This can also be
extended to continuous QoE studies where a certain parameter range is to be assessed, e.g., QoE
for video bitrates between 500 kbps to 3000 kbps. Thereby, the parameter range is split adaptively
depending on the test statistic. This approach is especially useful in crowdsourcing environments.

2.2.2 Crowdsourced QoE. For collecting subjective QoE ratings from users, crowdsourcing
is another promising direction which has gained huge momentum among researchers [23, 63].
QoE evaluation studies of multimedia applications may be moved from traditional laboratory
environments into the Internet and give researchers a powerful tool to access a global pool of
subjects. As a result, a diverse population and the heterogeneity of users (as well as their used
1http://live.ece.utexas.edu/research/quality/
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devices and software con�gurations) can be taken into account, while at the same time tests can be
carried out in real-life environments of the subjects. Due to the large crowd, reduced turnaround
times and lower compensation costs for test subjects are appealing for researchers.

Crowdsourcing o�ers the possibility to extend laboratory studies, e.g., on user-related in�uence
factors or context factors [63]. This is often not possible in a single test carried out in a test lab due to
the restricted pool of subjects and limited contexts. Along with the bene�ts of crowdsourcing, new
challenges arise, e.g., conceptual challenges in the test design, unreliability of users and statistical
analysis of the results, but also incentives and payment schemes to motivate users [136]. In this
context, Redi et al.[105] investigated the bias due to the scoring task in crowdsourcing as well
as contextual e�ects, since crowdsourcing-based assessment is usually fragmented into smaller
tasks as opposed to laboratory tests. The use of anchor stimuli is bene�cial to keep such context
e�ects to a minimum. [46, 63] conclude that training of the subjects and proper reliability questions
integrated in the task design improve data quality signi�cantly. Best practices and guidelines are
provided by Hoßfeld et al. [63]. Existing frameworks for QoE evaluation are surveyed in [62].

2.2.3 Interdisciplinarity: Psychophysics, Psychoyphysiology and Informatics. White box models
take into account laws from psychophysics which relate human perception to a physical stimulus.
As mentioned, the Weber-Fechner law relates the actual change in a physical stimulus and the
perceived change yielding a logarithmic relationship. Steven’s power law relates the magnitude of
a physical stimulus and the human perception, resulting in a power law formulation. Both laws can
be interpreted in the context of QoE modeling by relating QoS parameters to QoE. Emerging from
the �eld of communication networks, the IQX hypothesis [41] relates the perceived change of QoE
to the actual QoE level, as users are more sensitive to disturbances in case of high QoE which leads
to an exponential model. Those models map measurable QoS parameters to QoE and are typically
based on subjective studies where users report the QoE of a stimulus (e.g., an impaired video).

Psychophysiological assessment tries to overcome some problems due to self-reporting, like
rating scale issues where users tend to only use part of the rating scale [46]. Too many rating scale
items may increase the user’s uncertainty how to rate while an insu�cient number of items has no
discriminatory power [28]. Thereby, psychophysiological measurements are used to explain QoE
assessments of subjects and to improve existing QoE models by providing a deeper understanding,
especially of user-related factors and their role in QoE modeling. In such experiments [52, 77],
psychophysiological signals are measured as response to a physical stimulus. In [35], Engelke et al.
classify physiological measurements and survey methods that are most accessible and promising
for meaningful exploration of multimedia QoE.

Besides giving a deeper understanding of QoE, psychophysiological assessment is not restricted
to lab experiments only. Especially in the context of crowdsourcing, it would be interesting to collect
such data from a diverse pool of subjects. Thereby, sensors on smartphones or �tness watches
may allow to measure or approximate psychophysiological signals. For example, Lebreton et al.
[79] present a framework for eye tracking on smartphones which may be used in crowdsourcing
experiments to collect subjective data. In partiular, the framework helps to provide visual attention
as a new kind of information beyond self-reports of the perceived quality. With the advances of
devices like smartwatches or other wearables, it will be possible to measure parameters like heart
rate, heart rate variability, temperature, blood oxygen, or galvanic skin response [104] to quantify
user-related factors in QoE modeling [109].

2.2.4 Data-aware QoE Modeling. To cope with the large factor space found in QoE modeling,
the idea of data-aware QoE management emerged. A QoE model is derived by using Principal
Component Analysis (PCA) to correlate QoE and QoS based on the features of the data. PCA

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2017.



1:8 Lea Skorin-Kapov, Martín Varela, Tobias Hoßfeld, and Kuan-Ta Chen

User layer: Quality of Experience model
based on subjective studies

Application layer: app-level metrics (ALM)
monitored at end user side

Network layer: measurable QoS parameters
monitored in the network or at end user side
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Fig. 3. Problem separation in QoE modeling.

transforms a set of observations of possibly correlated values into a set of linearly uncorrelated
variables referred to as principal components. However, the principal components may be di�cult
to understand and may combine di�erent QoE in�uence factors and QoS parameters a�ecting
di�erent modalities (e.g., audio and video). Another approach to extract features from a data set is
Multidimensional Scaling (MDS) of similarity scores of stimulus pairs as done by Möller et al. [92].
The key idea of MDS is to transform the data into distances between points representing perceptual
events in the feature space. In [83], Liu et al. use PCA to �nd the impact of QoS parameters on
application- and network-level and their in�uence on QoE for video streaming in wireless networks,
whereby the �rst two principal components explain more than 80% of variability in the data set.

Wang et al. [140] propose a data-driven architecture for personalized QoE management in 5G
wireless networks and propose machine learning models, since white box models are not existing
for all observable parameters or some system parameters may be hidden. As already discussed
in Section 2.1, machine learning methods are successfully applied in the QoE domain [7] and
various techniques have been utilized, e.g., support vector machines (SVM) for web QoE model
[60], recurrent neural network (RNN) model for audio and video transmission [113, 114], decision
trees for Internet video QoE [10], Bayesian network for VoIP applications [90].

Although machine learning is a promising direction, we recommend to follow a hybrid approach.
Figure 3 illustrates problem separation in QoE modeling. QoE models are based on subjective studies.
Instead of testing all in�uencing variables on application- and network-layer in the subjective
studies, the relevant measures which may be perceived by the end user are tested only. If possible,
the QoE models should be described in a mathematical way with white box models, while machine
learning methods may be useful to map parameters to the components of the white box model.
Thereby, statistical methods like PCA may be promising to identify the perceptual dimensions.

2.2.5 Summary of Emerging Approaches to Derive QoE Models. Figure 4 summarizes emerging
approaches to derive QoE models. We consider the ’user domain’, i.e., how subjective data is
collected via crowdsourcing and enriched with additional information and psychophysiological
signals. In the ’machine domain’, data-driven QoE aspects are emerging and consider how to detect
main features and utilize machine learning for modeling large-scale parameter spaces. A limitation
of many current QoE models is neglecting of context and human factors, which may be attributed
to the fact that such data is di�cult to collect, or di�cult to incorporate into QoE models in an
accurate way. Crowdsourcing [63] enables new models taking into account user related factors
(e.g., demographics, expectations) in various realistic contexts. Combining emerging approaches
from the user and machine domain is a promising path towards multi-factor QoE models.
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Fusion of modalities for better understanding and modeling [35]

Fig. 4. Summary of emerging approaches to derive QoE models.

3 QOE MONITORING
The exploitation of QoE estimation models requires the collection of necessary input parameters
for various types of services. Monitoring architectures commonly collect data using passive or
active probes deployed along various parts of the service delivery chain [50, 110]. An important
consideration is the speci�cation of monitoring points, determination of what parameters to
measure and at what level of granularity, and who such measurements should be exposed to.
Data may be collected at di�erent levels (as discussed in Figure 3) [19, 74]. Moreover, data may
be considered at di�erent aggregation levels and collected at di�erent time scales to facilitate
either monitoring and control in (near) real-time, or subsequent to service usage. A complex task
lies in designing a monitoring system able to support identi�cation of possible root causes of
QoE impairments, as such causes may occur in di�erent network regions, from the user device,
home/access network, core network, CDN, or in supporting services such as DNS [18].

3.1 Client-side monitoring
Applications running on client devices potentially have access to device capabilities, context
information (e.g., location), user usage behavior, and application-level metrics. Such information
may be used to monitor end user QoE at the application layer, on a per-service, per-user, and per-
content level. On the other hand, it is crucial for network operators to also monitor service quality
and ensure customer satisfaction. One option is for OTT providers to collect QoE monitoring
data, and expose it to network providers via APIs [17]. Used in conjunction with in-network
monitoring, this would enable solutions to determine potential root causes of problems, or tune
networks. A similar approach is proposed by Ahmed et al. in [3]. They propose a solution called
Qualia for passive QoE monitoring relying on user terminal probes. Factors are monitored across
di�erent layers: the user, context, resource, application, and network layers. Their solution assumes
di�erent stakeholder roles, namely an end user installing the probe on their device, an OTT provider
provisioning an API with access to app-layer data, and an ISP responsible for collecting monitored
information from the client, analyzing it in the cloud, and using it for QoE management.

Considering end-device monitoring, Chen et al. proposed a tool called QoE Doctor for objectively
measuring app QoE at both the network and application layers using active measurements [24].
Rather than relying on actual user interactions and feedback, the tool uses UI automation techniques

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2017.



1:10 Lea Skorin-Kapov, Martín Varela, Tobias Hoßfeld, and Kuan-Ta Chen

to replay typical user behaviour (e.g., posting a message on facebook, playing a YouTube video),
and then objectively measures latency through UI changes on the screen. Given that no access is
required to the application logic, the tool is applicable across various mobile app scenarios.

Casas et al. [21] combine passive end-device network measurements, application-level mea-
surements, and QoE user feedback in operational mobile networks to study the QoE of popular
smartphone apps (YouTube, Facebook, Gmaps, Web Browsing and WhatsApp). As an example,
QoE-relevant KPIs (such as stalling, video resolution) of YouTube adaptive streaming are monitored
using the YoMoApp tool developed by Wamser et al. [123, 139]. YoMoApp2 allows users to check
how well their network performs for YouTube streaming, and see how it compares in terms of
performance to other networks in a certain geographical area. It supports collecting subjective
QoE feedback from users, as well as network usage statistics and device characteristics. A similar
approach was proposed by Nam et al. [95], who developed a system called YouSlow3, designed to
monitor YouTube stalling events on clients, collect reported data on Google maps, and calculate
ISP statistics in terms of stalling duration and location.

In general, it is clear that the use of crowdsourcing to collect end-device measurements is a
promising approach in performing QoE-based network and service performance analysis at a large
scale [21]. As an example, applications such as Skype already collect subjective user feedback after
every call, thus providing important input for service quality enhancement [51]. As pointed out
in [21], a key issue for ISPs wishing to utilize similar tools is addressing customer incentives to
install measurement tools on their end device.

3.2 In-network and distributed monitoring infrastructures
While client- and server-side logs provides access to application-level metrics, for the most part
ISPs to-date do not have access to probes on the client device, and thus rely on measurements
collected using in-network probes. Probes are typically distributed along various parts of the service
delivery chain and gather information about the performance of network paths and links. This
information then needs to be fed to application-speci�c QoS-to-QoE models to obtain insights into
estimated QoE. An important step in monitoring tra�c is classifying the tra�c so as to determine
the corresponding application type and QoE model to apply.

Towards a standardized monitoring architecture. Despite the trends in migrating towards
softwarized networks, there is to-date no standardized QoE monitoring architecture available in the
scope of related SDN and NFV standards. One proposal of a generic QoE monitoring architecture
for multimedia services was standardized by ETSI [39], resulting as an outcome of the Celtic-
PLUS QuEEN project4. The architecture assumes an operational layered QoE model, whereby QoE
in�uence factors are categorized into layers (going from a resource layer up to a user layer). The
output of a given layer L represents the input to layer L + 1, and is speci�ed as a set of indicators
representing the “quality” of the system’s behavior up to layer L. The actual QoE monitoring
architecture consists of distributed probes which provide required parameters across layers to a
QoE-agent running the QoE estimation process (Figure 5). Di�erent pluggable QoS-to-QoE mapping
models are used for di�erent layers and services, allowing to re-use a QoS model in several QoE
agents for di�erent services. QoE-agents may further be distributed along di�erent points in the
service delivery path, and the QoE-agent itself can be distributed, allowing for �exible deployment
at di�erent layers in the network/application stack, as needed. In the context of NFV, the agent and

2YoMoApp is available via Google Play Store
3https://dyswis.cs.columbia.edu/youslow/
4https://www.celticplus.eu/project-queen/
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Fig. 5. Architecture of a generic QoE-agent as specified by ETSI TS 103 294 in [39]

probes may be implemented as virtual functions. The QoE-Agent further provides QoE estimations
to QoE-aware applications via prede�ned APIs.

In addition to the QuEEN project, other e�orts in developing large-scale distributed QoE moni-
toring architectures were conducted in the scope of the EU FP7 LEONE project5, and FP7 mPlane
project6. Related standardization activities are ongoing within IETF working groups LMAP (Large-
Scale Measurement of Broadband Performance) and IPMM (IP Performance Measurements).

Trends in softwarization. In terms of technical implementations, network operators are in-
creasingly turning to SDN-based solutions facilitating centralized control of a dynamically pro-
grammable forwarding network. By shifting intelligence to a centralized unit, QoE-driven control
decisions can be made based on a global view of the underlying network state. Service chains
of virtualized functions can be controlled by an SDN controller and dynamically orchestrated in
real-time. Monitoring data needs to be fed to a control plane that is capable of driving QoE control.
Furthermore, with standardized northbound APIs, mechanisms are provided for applications to
provide requirements to the controller (driven by QoS-to-QoE mapping models), which can in turn
invoke tra�c management mechanisms to meet di�erentiated service requirements [71].

Jarschal et al. [71] examine how monitoring and exchange of per-�ow parameters, application
signatures, or application quality parameters can support application-aware QoE-driven network
management in an SDN-enabled network. Further investigations into a joint application and
network control plane leveraging SDN are reported by Schwarzmann et al. [118, 119].

Going beyond programmability of the control plane using SDN, a novel direction to be explored
is the potential of exploiting more �ne-grained QoS information to estimate QoE, using in-band
network telemetry (e.g., using the P4 language) [18, 76]. Such an approach o�ers the potential for
monitoring individual �ows and tracking application performance in-band (especially if deployed
at Internet exchange points, IXP), with network routers and switches annotating packets with
information about per-hop latency and packet loss. The potential of exploiting this technology in
the context of QoE monitoring and management remains an open research question.

Considering virtualization trends, operators are beginning to re-design their network functions
(e.g., packet gateways, policy servers, IP Multimedia Subsystem) towards virtualized network
functions (VNFs) running on commodity hardware. Going from purpose-built, dedicated hardware
to running VNFs imposes challenges in meeting performance and low latency requirements. In
particular, signi�cant challenges remain regarding the monitoring, enforcement, and management

5http://www.cordis.europa.eu/project/rcn/105990_en.html
6http://www.ict-mplane.eu/
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of real-time services based on NFV 7, such as conversational audio/video, or other emerging 5G
service scenarios (e.g., tactile Internet, AR/VR, gaming, mission critical services, etc.). Performance
monitoring information related to VNF instances and service chains needs to be considered together
with latency requirements when orchestrating service chains and selecting deployment locations
for service components [87]. As highlighted in [56], the NFV infrastructure should be able to gather
performance information at di�erent levels (e.g., hypervisor, virtual switch, network adapter).

Further challenges are related to the deployment location of actual QoE monitoring probes
[56]. Some initial work by Dinh-Xuan et al. [31] proposed a VNF for monitoring QoE of video
streaming in the network and evaluated its accuracy depending on di�erent placements (network
edge vs. near the streaming server). Tselios et al. [134] further discuss the deployment of virtualized
QoE-monitoring probes in Mobile Edge Computing (MEC) platforms, with access to network,
user, and application-related data. Robitza et al. [110] give a detailed overview of QoE monitoring
architectures, and discuss the need to deploy virtualized probes, which can communicate with
both virtual and physical network elements. A trade-o� is to be considered between accuracy (e.g.,
ensuring precise timestamps of collected data), and cost-e�ectiveness.

In a recent survey [57] among over 90 mobile operators, key plans were identi�ed in terms of
QoE monitoring in the transition to virtualized networks. However, despite these trends, very
limited studies have to-date reported on the challenges of QoE monitoring in virtualized networks
in real-world deployments. In particular, challenges still remain in assessing the performance of
passive monitoring probes deployed as VNFs.

From a measurement infrastructure to an aggregation infrastructure. As highlighted by
Bustamante et al. [18], many challenges still remain in building a common infrastructure to measure
QoE. A key requirement is the gathering, aggregation, and correlation of di�erent measurements,
so as to assess overall QoE and perform fault diagnosis. The challenge thus remains how to go
from a “measurement infrastructure” to an “aggregation infrastructure”, a topic that is further
complicated by the multiple stakeholders involved and their willingness and incentives to share
measurement data. Clearly, for ISPs to achieve QoE-aware service delivery, access is needed to
monitored application-layer KPIs [3]. Ganjam et al. [44] envisage a federated QoE optimization
architecture whereby application providers and network providers collaborate to improve QoE,
leveraging ubiquitous client-side QoE measurements, “big data” platforms for real-time analytics,
and new control plane capabilities for ISPs (e.g., SDN, IXPs, NFV).

3.3 User behaviour and engagement monitoring
Given the general aim to maximize service usage and consequently revenue generation, it is of
clear interest to operators and service providers to monitor QoE and determine the impact that
quality degradation has on user behavior [11]. Going beyond quality metrics (e.g., stalling duration,
video bitrate), studies have also considered engagement-centric measures of QoE, such as video
viewing time, fraction of video viewed, and number of page visits [10]. A conceptual model that
relates the quality formation process to human behavior in multimedia consumption is proposed
by Robitza et al. [111]. They address how to predict user engagement and study how QoE results in
short-term user behavioral (inter)action. A large-scale study was reported by Dobrian et al. [32]
that investigated and found a strong impact of video quality on user engagement.

While engagement may in many cases be linked to quality metrics and QoE, it has on the
other hand been argued that user engagement should not necessarily be considered as a proxy for
QoE, given that many variables cannot be accounted for, such as why a user left a service. While
this may be due to poor QoE, it may also be due to for example lack of interest. One proposal
7See the IRTF Network Function Virtualization Research Group https://trac.ietf.org/trac/irtf/wiki/nfvrg
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mentioned in [129] in the context of video monitoring is to use the fraction of watched video as
an engagement metric, whereby “early-quitters” could then be removed from consideration. In
their studies, Balachandran et al. [10] highlight that quality metrics are interdependent, may have
counter-intuitive relationships to engagement measures (i.e., the relationship is non-monotonic),
and that there are many external factors that potentially confound the relationship between quality
and engagement (e.g., type of video, user connectivity). They thus employ a data-driven approach
and propose a predictive model of user engagement based on monitored quality metrics. Going from
client-side measurements of application-layer video quality metrics to relying only on network-
based measurements (as is often the case for network operators), Zubair et al. [126] report on a large
scale study to characterize the impact of network performance on mobile video user engagement.
Their proposed model of the relationship between (core and radio) network factors and video
abandonment may be utilized by operators looking to monitor user engagement in real-time. Their
�ndings also show that certain quality-related metrics (such as throughput) do not necessarily
indicate lower abandonment. Taking more of a QoE management perspective, Duan et al. [34]
give a detailed overview of how the monitoring and analysis of human factors (in particular user
behavior patterns) can be exploited to guide system/network management and improve QoE.

3.4 Applicability of big data analytics and data-driven techniques
Big data analytics. With the proliferation of IoT technologies and sensor data, richer applications,
as well as a massive increase in user-generated content (e.g., social network posts), a wide range of
context- and user-related data is becoming available [141]. Challenges thus lie in extracting mean-
ingful and useful information from the collected data, that can further be converted to actionable
knowledge and utilized in managing QoE. Big data refers to large scale data collection, manipulation,
and storage, and is generally targeted towards outputting patterns or correlations [141]. Machine
learning techniques, on the other hand, focus on building learning models to make predictions
based on input data. Both concepts are increasingly being applied in the QoE management domain.
Zheng et al. [150] propose a generic framework for integrating big data analytics with 5G mobile
network optimization methods to improve both QoE and network operation e�ciency.

In general, the incorporation of contextual information can aid both network and service
providers in making more informed decisions related to the QoE of their customers [21]. In [66],
Hoßfeld et al. discuss how information collected from simultaneous out-of-band channels (e.g.,
social network trend analytics), can be used to optimize QoE if interpreted in a timely manner.

Data-driven techniques. Assessing QoE from a user perspective and capturing the subjectivity
of users without relying on explicit user feedback is clearly a challenging task. Wang et al. [140]
propose a data-driven architecture for enhanced personalized QoE in the context of 5G networks.
In a �rst (o�ine) phase, a monitoring agent is installed on the user device and collects QoS data,
context data, and subjective user feedback on a per-user, per-service basis. In a second (online)
phase, real-time QoS and context data is collected from users during service usage, and used to
predict user preferences based on previously trained models.

In [72], Jiang et al. propose measurement collection and decision making as a joint process
together with real-time QoE measurements. Their framework called Pytheas provides interfaces
through which application sessions can send QoE measurements to update real-time global views,
and can receive control decisions made by the system (e.g., CDN and bitrate selection).

3.5 Monitoring QoE in the case of encrypted tra�ic
Most of the aforementioned approaches advocate the collection of QoE monitoring data from both
the end user device and the network. While these are viable approaches, they are based on the
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assumption that the network operator has access to data collected on the user device, which in the
case of application-speci�c data (especially in the case of OTT apps) is commonly not the case.

Consequently, ISPs to-date rely primarily on passive tra�c monitoring solutions deployed within
their network to obtain insight into degradations perceived by end users. Sha�q et al. [125, 126] focus
on monitoring streaming video QoE (in terms of engagement) from a mobile operator perspective.
Heuristics are used to model the complex relationships between various network factors and
user behavior related to watching mobile videos, thus enabling operators to predict user behavior
without any access to client- or server-side logs.

Katsarakis et al. [74] studied the statistical relations between QoS and QoE for encrypted and
adaptive YouTube video streaming. For every video session, a vector of network and application
QoS features was computed, and the Statistically Equivalent Signature (SES) method was used to
identify multiple minimal-size sets of QoS features with maximal predictive power for a target
QoE value. In a more generic approach, Aggarwal et al. [2] proposed the Prometheus system,
which relies on ML techniques to relate passive in-network measurements to applications’ QoE,
without knowledge about speci�c application services. Results with over 80% accuracy are reported
when network tra�c features were used to classify QoE into two classes (“good quality” and “bad
quality”) using data collected in the core network of a large cellular operator. Dimopoulos et al. [30]
proposed a methodology for detecting video streaming QoE-related KPIs. While Dimopoulos et al.
di�erentiate between models that classify video stalling, average video quality, and video quality
variations, Orsolic et al. [97] rely on QoE models to convert these KPIs to a QoE class and build
a single ML model. They proposed a methodology for the classi�cation of end users’ QoE when
watching YouTube videos, based only on statistical properties of encrypted network tra�c.

Summary of QoE monitoring aspects addressed in this Section

• Client-side monitoring:
– provides access to user- and context-related data required for a holistic view of

QoE [78],
– can be performed using passive [3, 21, 123, 139] or active [24] measurements,
– is challenging for ISPs, due to incentive issues [21],
– is addressed within standardization, e.g., the 3GPP QoE reporting framework [1].

• Measurement probes:
– may be distributed across various locations along the service delivery path [3, 21,

24, 39, 139],
– may collect data and feed quality estimation models at various layers [39].

• Trends in softwarization:
– enable new ways of collecting application-level and network-level measurements

via standardized APIs [71, 73, 96, 118],
– enable the deployment of virtualized probes at both the client and network

side [57, 110], with challenges related to monitoring accuracy, probe placement
[31, 56, 91] and latency [87].

• Big data analytics and data-driven approaches:
– enable the move to personalized QoE [140],
– require an architectural change to collect and aggregate large amounts of data

from customer devices and network elements [150],
– enable QoE management decisions in the network, such as optimized resource

allocation [150] and improved SDN-based tra�c engineering [29],
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– advocate closed-loop solutions integrating QoE-related control decisions with
real-time QoE measurements [11, 72].

• Encrypted tra�c:
– makes it di�cult for network operators to monitor and manage QoE, requiring

new approaches to monitoring [110],
– is susceptible to ML approaches for predicting user engagement [126], application-

layer KPIs [30], or overall QoE for OTT applications [30, 97].

4 QOE MANAGEMENT
The literature on QoE-driven cross-layer, and application-layer management mechanisms is plen-
tiful. Just in recent years, there has been an explosion of papers e.g., on HAS and QoE, and on
QoE-driven scheduling algorithms for wireless networks. In the interest of avoiding redundancy,
we will not expound on these in this paper, but rather provide pointers to relevant surveys for the
reader to peruse. In the context of application-layer schemes, and in particular HAS, we refer to
[121]. At a high-level, QoE-driven application-layer management schemes focus on adapting the
service to underlying network conditions, and do not exert direct control of the network (mostly
due to the fact that this is not feasible in most cases). Such adaptation mechanisms are limited
in the sense that they perform local optimizations, and do not ensure optimal (nor necessarily
fair) QoE among multiple clients sharing network resources. Cross-layer approaches, on the other
hand, involve various forms of application-network interaction and exploit information available
at di�erent layers to inform the management mechanisms of other layers. As detailed by Schwarz-
mann et al. [118, 119], such a cross-layer exchange of information can further drive optimization
and control actions at the application-level, network-level, or both. With regards to cross-layer,
QoE-driven approaches, we note [13, 16, 37, 75, 103, 128]. We point the interested reader to a further
discussion of di�erent metrics and optimization objectives considered in driving QoE management
and optimization decisions, provided in the Online Appendix to this paper.

Recent years have seen the rapid adoption of virtualization technologies for both networks
(SDN) and network functions (NFV), both prominent concepts also in the de�nition of 5G networks.
The use of these technologies opens new challenges and opportunities for QoE management.
On the one hand, the use of virtualization can make certain tasks (such as e.g., passive network
monitoring) harder to perform well (due to e.g., unavailability of specialized capture cards in
commodity hardware), but on the other hand, it enables a wide range of means for improving QoE.
Whereas in traditional networks everything tends to be inherently distributed, SDNs concentrate
the control plane, achieving good visibility of network state in a single point, and simplifying the
decision making process in cases such as improving QoE for certain �ows/applications across the
network. Likewise, NFV enables rapid adaption and scaling of network services, which allows to
cope with varying loads and conditions with greater �exibility than in traditional network setups.
In the 5G context, these two concepts also enable Mobile Edge Computing (MEC), which brings
services closer to the users, enabling load reductions in the network, lower latencies, etc. In the
remainder of this Section, we focus further on open research issues and ongoing trends related to
QoE management in emerging softwarized networks.

4.1 Exploitation of the SDN paradigm
The advent of SDN has made possible a variety of approaches to consider QoE when doing network
management [151]. These tend to be grounded on the SDN controller’s centralized view of the
network’s state, and its ability to enforce faster and more �exible reactions to e.g., congestion
situations. Figure 6 portrays example QoE related components in the context of SDN.
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Fig. 6. QoE monitoring and management components mapped to an SDN architecture.

In the context of QoE-driven network management, Kassler et al. [73] address the problem of
QoE-driven path assignment by proposing a pre-negotiation phase during which a QoS matching
and optimization function (QMOF) produces feasible service con�gurations based on application-
speci�c parameters, providing both an optimal con�guration and several sub-optimal ones (resulting
in a so-called Media Degradation Path, MDP). At the SDN controller, a Path Assignment Function
tries to optimize the con�gurations for concurrent sessions based on their MDPs, then issuing the
relevant OpenFlow8 directives to the switches in the network. QoE-centric �ow routing has further
been addressed by Dobrijevic et al. [33], who apply metaheuristics to optimize path assignment.

In a more cross-layer approach, the SDN controller’s global view of the network can be used
to inform e.g., media elements about how to manage quality. For example, Bouten et al. [16] and
Bentaleb et al. [15], propose di�erent approaches to limit the number of HAS representations
avaliable to clients, based on information gathered by the SDN controller. This results in overall
improvements in the video playback. Awobuluyi et al. [9] consider real-time video applications
in 5G networks. They exploit SDN and H.265’s scalability, by collecting data about the network
topology and state from the SDN controller, estimating QoE, and based on that, deciding how to
best stream the video content (e.g., path selection, alternative paths for di�erent layers).

A more generic approach to managing OTT services by means of SDN is provided by Liotou et
al. [81], with a focus on 5G networks. They propose a “QoE-Serv” element (mapped to the SDN
management plane), which collects information from user equipment and the network (both access
and core), allowing the OTT provider to better understand the QoE for any given user of a service.
The QoE-Serv element can, if QoE is estimated to be too low or to be about to drop, request action
from the SDN controller (presumably based, e.g., on subscription tiers).

4.2 QoE management in the context of NFV and service orchestration
As with SDN for the actual networks, network functions and services are also on the path to
virtualization. Contrary to the SDN �eld, where OpenFlow became the de-facto standard for

8OpenFlow is a standardized protocol between SDN controllers and network devices, providing controllers direct access to
and manipulation of the forwarding plane of (both physical and virtual) network devices.
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Fig. 7. High-level view of QoE monitoring and management components within an NFV architecture.

controller-switch communications, the NFV �eld is more fragmented and signi�cantly more ar-
chitecturally complex. As of this writing, there are two main reference architectures for NFV
management and orchestration (MANO), ETSI NFV MANO [38], and ONAP (Open Network Au-
tomation Platform, formerly AT&T’s ECOMP) [8]. The ETSI NFV MANO architecture has been
under intense standardization work since 2013, and is composed of three main elements: the VNF,
the NFV Infrastructure (NFVI), and NFV MANO. Several implementations of it exist, including
the reference Open Source MANO, OSM9 (in its second release, as of this writing). ONAP is the
result of AT&T’s opening of their ECOMP platform, which has been in production for over two
years now. Both architectures share similarities (like their complexity), but also have signi�cant
di�erences, and it is not clear at present which one will end up being dominant in the market.

As they stand, neither architecture addresses QoE directly, and even broader aspects such as
service assurance (SA) are not so clearly de�ned (ONAP de�nes a component for Data Collection,
Analytics and Events — DCAE, and there are some proposed extensions to the ETSI NFV MANO
with SA components [138], but many details are still missing).

Some literature on using NFV for managing QoE has begun to emerge recently. In [12], Barakab-
itze et al. proposed a so-called “QoE-Softwarized” architecture, which uses NFV and SDN (with
the latter bearing most of the work) to implement QoE management mechanisms. It is not clear,
however, how such an architecture would integrate into a MANO context.

In general, we could see QoE-oriented VNFs co-existing with service- and network-speci�c
ones, and performing e.g., monitoring or estimation tasks based on data collected from them. That
data could be fed to an optimization component within the NFV orchestrator to aid it in its tasks.
Network slicing may be seen as a key feature/enabler for �exible and dynamic allocation of network
resources to support diverse requirements of 5G applications. Figure 7 depicts how these QoE
components could �t in an NFV MANO-like architecture. We once again note that meeting low
latency requirements imposes a challenge in the context of managing services based on NFV and
those running in cloud environments, as discussed in Sec. 3.2. Such challenges may be tackled by
exploiting the MEC paradigm, as discussed in the following section.

9https://osm.etsi.org/
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4.3 Mobile Edge Computing as an enabler for QoE management
Mobile Edge Computing brings the idea of the “telco cloud” to the edge of the mobile network,
providing virtualization infrastructure, e.g., at the eNodeB. The main idea is that of providing
low-latency, high-throughput capabilities, and a clear view into the Radio Access Network (RAN)
and context information to applications that may bene�t from them (e.g., analytics, transcoding,
IoT, hyper-localized caching, location-based services) [67]. MEC extends the notions of NFV and
SDN to the network’s edge, so similar types of QoE management approaches can be expected, but
also integration with radio management mechanisms.

Peng et al. [100] propose an architecture for QoE-oriented management of edge services. The
proposed architecture mirrors, to a degree, the ETSI NFV MANO one, and is extended with RAN
aspects. In particular, they study the use of channel state information from the user equipment
to deliver personalized performance from services running in mobile edge. In general, insight
into real-time radio network conditions and context information (e.g., location) can be used to
dynamically optimize the network and service operation in a QoE-aware manner [67].

In [47], Ge et al. propose a MEC-assisted DASH scheme, in which information from the RAN
is used to help DASH clients obtain better quality. Their approach is based on a two-level cache
replacement strategy (by content and representation popoularity, in that order), and by using
information about the RAN status to make decisions about which representations to keep cached.

5 PERSPECTIVES WITH RESPECT TO QOE MANAGEMENT
5.1 Towards novel QoE monitoring and management infrastructures
It seems almost certain that virtualization, both in the network (SDN and NFV) and in the service
domain (cloud) will be the dominant deployment approach in the years to come. This presents
interesting opportunities for QoE management, since QoE components (e.g, QoE optimization,
co-located with an orchestrator as in Figure 7) could have a much more comprehensive view of both
the application and network layers, and more importantly, the ability to actuate on both of them.
The literature so far shows either some SDN or (to a lesser degree) NFV based approaches to QoE
management, but a more comprehensive architecture encompassing both of them is still lacking.
We depict such an architecture in Figure 8, wherein most of the current (and likely upcoming) QoE
management approaches can be inscribed. We identify three main layers: virtualized networks and
infrastructure, the virtualized network functions, and a service layer, which relies on a northbound
API to deal with the underlying virtualized environments. QoE management is done via a feedback
loop (in the Service Assurance block), which gathers monitoring data, and informs the service
layer (which in turn can pass the information to e.g., the NFV MANO or the SDN controller, for
concrete action). The top layer includes, besides the traditional OSS/BSS10 functions, the notion
of the “telco cloud”, whereby service developers could deploy their whole services on top of a
telco’s own infrastructure. The architecture therefore includes an SDN layer, and NFV layer, the
northbound API and Service Innovation layer, and a Service Assurance component, which would
take care of the QoE data aggregation, analytics, etc.

5.2 Economic and business aspects
There is, often, an unspoken assumption when considering QoS/QoE management. This assumption
is that implementing QoE management makes sense from a business perspective; i.e., the cost of
implementing the management scheme will be o�set by larger revenues, lower churn rates, etc. It
is not clear, however, how this assumption holds in many real-world scenarios. Most notably, in the

10Operations Support Systems / Business Support Systems
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Fig. 8. A high-level architecture for QoE management in future so�warized networks.

case of OTT services, where there are multiple service providers involved, their business interests
may be opposed to each other. This exact dilemma has been at the heart of many argumentations
on Network Neutrality. While most of the literature on QoE management concerns itself with the
technical aspects of actually implementing the management schemes, relatively few works address
the business aspects, which are critical for those schemes to become viable in practice.

One issue to consider is that of pricing (i.e., in the face of di�ering requirements from di�erent
users, di�erent pricing strategies may be needed). This has long been a subject of study in the
networking community, and has more recently been expanded to consider QoE, most notably by
Reichl et al [108]. Reichl’s �xed-point model introduces QoE as one of the factors a�ecting (and
a�ected by) service price, which in turn a�ects both demand and the resulting QoS (assuming
stable network resources), which a�ects QoE itself. The model has been empirically validated in the
context of OTT video [85, 108] in terms of the users’ willingness to pay for di�erent quality levels.

Related to the issue of charging users for di�erent QoE levels, there is that of guaranteeing said
QoE levels. Some preliminary work has been done by Varela et al. [137], by introducing the notion
of Experience Level Agreements (ELA) as a QoE-oriented counterpart to traditional Service Level
Agreements (SLA). The paper motivates the concept, and points out the outstanding issues standing
in the way of its implementation. Beyond the aforementioned incentives for cross-stakeholder
cooperation, they point out the di�culty in conveying to users, a priori, the di�erence between QoE
levels. That is, how to explain to users the perceptual di�erence between a “standard” and “premium”
quality subscriptions. We note that for some services, such as video, there have been some inroads
in this topic, notably by Net�ix, which o�ers HD and UHD subscriptions (with some other minor
di�erences) at di�erent price points. However, while there is a quality-based di�erentiation (in
term of the available content resolutions), there are no guarantees on the delivered service quality,
and the provider relies on the users’ pre-existing (or at least assumed) knowledge of the visual
di�erence between HD and UHD content.
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For a provider, churn is especially relevant and “a provider needs to be able to observe and react
quickly on quality problems, at best before the customer perceives them and considers churn” [41].
QoE management may therefore by a proper means as distinguishing feature across providers.
Further the cost of retaining existing customers is typically lower than to win a new customer.
Although churn is a major topic in many business sectors and various models exist [54], there is
often not su�cient data available about the customers and their QoE over time [106].

To this end, Floris et al. [42] and Ahmad et al. [4] provide a theoretical user churn model to
investigate collaboration between service and network providers and how to avoid user churn. The
user churn model is based on [27] which considers quality and pricing as major causes for customer
churn. The fundamental assumption is that user churn is a (sigmoid) function of the perceived QoE.
Although the model lacks validity due to missing subjective data, it is a promising approach to
investigate the interplay between QoE and user churn. By simulations, [4] shows that collaboration
between service and network providers may increase revenue and provider better QoE to users. In
[42] the customer lifetime value is utilized to identify the most pro�table customers.

In [58], Heegaard et al describe incentives for network operators to cooperate along the service
chain, by sharing more information than they currently do. They argue that the current way of
sharing performance information among providers (by means of SLOs attached to their SLAs) is
not su�cient, leading to sub-optimal results (either being too risk-averse, or ending up paying
more than necessary in SLA violations). They propose a game-theoretic approach to inter-ISP
information sharing that results in a �ner-grained information exchange that is mutually bene�cial.

5.3 Extending QoE management to new domains: immersive AR/VR and mulsemedia
applications

Finally, we discuss the notion of QoE in the context of emerging immersive application scenarios.
In the past few years, stereo and 360-degree videos are becoming increasingly popular, because
they can better preserve immersive experience, allowing people to better record and share their
life and experience. A market report predicts that the global market of 360-degree cameras will
grow at an annual rate of 35% between 2016 and 202011. Such an increase is further boosted by
the growing attention of consumer-grade Head Mounted Displays (HMDs), which provide wide
Field-of-Views (FoVs), and come with integrated sensors for determining view orientation and head
position. In fact, another market research indicates that the global market of Virtual Reality (VR)
related products will reach 30 billion USD by 202012. Due to the increasing popularity of commodity
HMDs and new content generation devices, it is expected that there will be a need to extend the
capability of QoE management approaches to still accurately quantify, model, and manage QoE
when the user consumed content is beyond traditional audio and video materials. Moving beyond
the “traditional” senses (hearing, sight), there has been a transition from multimedia to mulsemedia
(multiple sensorial media), characterized by multimedia content enriched with new media objects
(olfactory, haptic, gustation). An overview is given by Sulema [130].

Our survey of previous research indicates that there have been numerous e�orts exploring the
new dimensions in system, content, and user experiences. Such studies can be roughly divided into
two categories: research de�ning new metrics, models, frameworks, or taxonomies, and research
seeking to better understand and manage QoE of systems which deliver more than pure audio and
video content. Ongoing standardization activities within MPEG focusing on immersive media are
being conducted within the scope of MPEG-I (ISO/IEC 23090 - Coded Representation of Immersive

11Global 360-degree Camera Market 2016-2020. https://goo.gl/zJCdnO
12Augmented Virtual Reality revenue forecast revised to hit $120 billion by 2020. https://goo.gl/nw9mtP
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Media). However, challenges remain in de�ning subjective and objective quality metrics and QoE
assessment methodologies, going from VR/AR/360-degree videos to mulsemedia experiences.

5.3.1 Methodological research. QoE of stereoscopic images is a topic that has received signi�cant
attention from the community [25, 144]. Benoit et al. [14] reviewed the di�erent issues related to 3D
image visualization, and proposed a quality metric for the assessment of stereo image pairs using the
fusion of 2D quality metrics and of the depth information. Extending the 3D content by one degree,
in [143], Wu et al. presented a quantitative and qualitative study of the impact of QoS metrics
(e.g., end-to-end delay, visual quality) on distributed gaming QoE in 3D tele-immersive (3DTI)
environments. They identi�ed a number of non-technical factors, such as age, social interaction,
and physical setup, actually played roles in in�uencing gamers’ experiences.

An essential element in a virtual environment is to increase the presence by introducing sensa-
tions other than audio and visual inputs, such as haptics, olfactory, and atmosphere. The addon of
haptics in virtual reality applications is especially popular as the stimuli and feedbacks are obvious,
easy to quantify, and more fun. In [55], Hamam et al. provided a comprehensive literature review
for QoE management in haptics-enabled virtual environments and proposed a taxonomy for the
evaluation of QoE for such systems. The authors also discussed a number of common metrics for per-
ception measures, psychological measures, and physiological measures respectively, and proposed
to use a Fuzzy logic Inference System (FIS) to model the QoE of haptic virtual environments.

QoE in augmented reality (AR) also deserves attention due to the potential use of AR in many �elds
such as medical surgery and emergency response training. Puig et al. [102] discussed the di�erent
aspects of QoE in AR applications, such as usability, ergonomics, human factors, ethnography,
subject quality assessment, and psychophysics, and how these issues di�er depending on scenarios.
Pallot et al. [99] extended the problem by exploring collective user experience when multiple users
watch the same sport game via AR technology. A taxonomy of QoE in augmented sports was
proposed and aligned to a close �eld UX (user experience).

5.3.2 Empirical studies and case reports. We further highlight empirical QoE studies related to
a variety of immersive applications and scenarios. Recently, Schatz et al. [117] presented a study
focusing on the impact of stalling events in a fully immersive setting involving users watching
omnidirectional videos using a HMD. Another major line of study is that of QoE of mulsemedia
applications. A clear research challenge is identifying how and in what way multisensory e�ects
a�ect QoE. For example, in [147], Yuan et al. conducted a user study which indicates that both haptic
and air-�ow e�ects in mulsemedia enhances the sense of reality and user enjoyment levels. Also,
their results demonstrated that by making use of mulsemedia, the overall user enjoyment levels
increased by up to 77%. In [148], three sensorial e�ects (i.e., haptic, olfaction, and air-�owing) are
investigated. Experiments showed that mulsemedia sequences can partly mask the decreased movie
quality and that the most preferable sensorial e�ect seems to be haptic, followed by air-�owing
and olfaction. Recent attempts at modeling QoE for spatio-temporal mulsemedia are reported by
Jallal and Murroni [70], focusing on the QoE of audiovisual sequences enriched with additional
sensory e�ects such as light, wind, vibration, and scent. A general challenge for researchers is the
lack of common test data and raw content needed to conduct studies and facilitate reproducible
research. Attempts to �ll this gap have been reported by Murray et al. [93], who provide a dataset
of videos enriched with olfactory content and annotated with subjective user ratings.

The synchronization between multiple stimulus channels can also be a signi�cant factor in�uenc-
ing the QoE. Timmerer et al. [133] conducted an empirical study analyzing the e�ect of inter-media
skew between olfaction and visual media on QoE which shows that, in general, a higher QoE
is perceived with olfaction presented after video as opposed to olfaction presented before video.
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Interesting, the �nding is in contrast to that in [94], which indicates that 1) QoE is hard to measure
and quantify, and 2) QoE may be highly sensitive to the context. In addition, [48] analyzed the
impact of inter-media skew between olfactory and audiovisual media content as well as the impact
of delay on the user-perceived experience.

Finally, research has also addressed QoE-related measurements in the context of AR. For ex-
amples, Gandy et al. [43] conducted a QoE measurement study using a physiological approach,
where a three-lead electrocardiogram (ECG) sensor was placed on the subjects’ chest as well as
galvanic skin response (GSR) and skin temperature sensors mounted on their non-dominant hand.
The results implied that the frame rate seems to have a smaller e�ect in VR applications; the
physiological approach, though promising, did not re�ect the subjects’ anxiety as they reported in
questionnaires, which may partly be due to the low signal-to-noise ratio and di�culties in analyzing
such measurement data. Meanwhile, the study [101] showed that end-to-end delay, frame rate,
image size and head motion speed seem to be important variables impacting the QoE in AR systems.
The authors therefore proposed a rate adaptation scheme that can maximize QoE by adjusting
system parameters.

6 CONCLUSIONS
The e�ective and cost e�cient management of applications and networks inherently puts end
users into focus and calls for various QoE management mechanisms. The aim of this survey paper
has been to convey the major emerging aspects of QoE management, from modeling, through
monitoring and management mechanisms, to the business aspects and upcoming research lines.
Given the current state of the art, we once again highlight the following among them:

Modeling :
• Move towards ecologically valid longitudinal studies conducted in the wild; enriched

subjective data with context and psychophysiological signals.
• Novel QoE metrics and assessment methodologies needed for emerging immersive

applications, such as AR/VR and mulsemedia.
• Models meant for QoE management require more sophisticated metrics than MOS

(See Online Appendix).
• Combinations of crowdsourcing and data analysis/ML techniques will be key.

Monitoring :
• Passive monitoring in the presence of encryption is a key problem to solve.
• Monitoring in 5G/virtualized contexts brings a host of new challenges to be addressed,

such as the accuracy of monitored data, the placement of probes, and meeting latency
requirements.
• Big data and ML techniques will also be key in this context.

Management :
• SDN and NFV form the key infrastructure for nearly any upcoming QoE management

approaches.
• Standardization issues and the complex architectures involved may limit the applica-

bility of QoE management mechanisms in the wild.
Business aspects :

• Economic incentives for di�erent stakeholders to cooperate remain a key roadblock
for comprehensive QoE management approaches.

QoE management is a broad topic with a plethora of relevant published papers. This paper is
thus not intended to provide a comprehensive survey, but rather to systematically outline the key
concepts and challenges that are likely to set the research agenda in the upcoming period.
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